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Abstract

A two-sample test is studied which rejects the null hypothesis of equal

population medians when two Wilcoxon distribution free confidence intervals

are disjoint. A confidence interval for the difference in population medians

is constructed by subtracting the endpoints of two one-sample confidence

intervals. Two different ways to select the one-sample intervals are

presented. A solution that specifies equal confidence coefficients for the

one-sample intervals is recommended. All solutions are shown to have the same

asymptotic (Pitman) efficiency as the Mann-Whitney two-sample test.
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1. Introduction

The purpose of this paper is to discuss a two-sample test and confidence

interval based on the comparison of one-sample confidence intervals. This

approach is appealing because, along with the two-sample inference, a

statistical description of the individual samples is provided and a graphical

representation of the two intervals provides an effective presentation of the

inference. (See Figure 1). The test rejects the null hypothesis of equal

population medians if the one-sample intervals are disjoint. The confidence

interval for the difference in population medians is constructed by

subtracting the endpoints of one interval from the opposite endpoints of the

other.

McGill, Tukey and Larsen (1978) discuss a similar idea when presenting

notched box plots as a way of displaying relevant information about a

population. The notch in their box is a confidence interval of the form

M±1.7SE for the population median, where M is the sample median and SE is a

sample estimate of the asymptotic standard error of the sample median when

sampling from a normal population. The factor 1.7 was empirically chosen to

produce a two-sample test with a two-sided level of roughly 5% for several

distributions. It is difficult to interpret the individual intervals

(notches) and "level" of the test since they are based on such rough

approximations. McKean and Schrader (1983), in a simulation study, found the

confidence coefficient for this procedure to be highly unstable for small to

moderate sample sizes, even at the normal distribution. Hettmansperger

(1984) suggested notching the box plots with sign-intervals. These

a' intervals have order statistics from the sample as endpoints and are obtained

by inverting the acceptance region of a two-sided sign test. These intervals P

a'

p.
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are distribution free, and have a well-defined asymptotic distribution theory

that does not require normality or symmetry assumptions. He also showed that

this procedure has the same asymptotic efficiency as Mood's (1950) median

test which corresponds to a particular choice of sign-intervals. Tableman

(1984) developed the small sample distribution theory for the comparison of

sign-intervals so that one can easily obtain the exact level and confidence

coefficient of the inference.

For the case of symmetric populations, we propose notching the box plots

with one-sample Wilcoxon-intervals which are defined in Section 2. It is

shown that these intervals are distribution free, and exact confidence

coefficients can be obtained from a table of the Wilcoxon (1945) signed-rank

distribution. Several large sample results concerning its endpoints are

presented. In Section 3, the two-sample inference is developed and

discussed. It is shown that the suggested procedures produce two-sample

tests that have the same Pitman efficiency as the Mnn-Whitney-Wilcoxon

(1945, 1947) two-sample test, when sampling from symmetric distributions.

Hence, the proposed procedure can be much more efficient than the procedure

based on sign-intervals. Two choices of confidence coefficients for the wvo

intervals are discussed and an example is presented. In the final section,

we discuss the effects of asymmetry on the two-sample inference. Although in

simulation studies we have not found the size of the test to be effected, a

reduction in power (Pitman efficiency) of the proposed test can result.

Hence, with strong asymmetry, it may no longer be a competitor to the

Mann-Whitney-Wilcoxon test. However, in many models it may not be

unreasonable to assume symmetry or approximate symmetry, especially after a ..

transformation has been applied.

* 4..



* . .. . . .. .S 7' 7' ZV V T V X ' U 7.7. *bJ L LtI L k * .j

-4-
5%

2. The Wilcoxon-Interval

Assumptions 2.1:

(i) Suppose Xi,... ,Xm is a random sample of size m with cumulative

distribution function (cdf) F(x-G), where G is the unique median,

F is continuous, and has density f, symmetric about 0, and which

satisfies f 2 (x)dx<-.

(ii) Let G,(t) denote the cdf of (X1+X2 )/2. Let fp denote the pth

quantile of F(x-e), O<p<l. Suppose Ge is twice differentiable in

a neighborhood of (p, with G;:=g positive and G9 bounded in the

neighborhood.

Remark 2.1. If f is symmetric, absolutely continuous, and has finite

Fisher's information f,(f (x)/f(x))2f(x)dx < , then the Assumptions 2.1

concerning F and G. are satisfied. For a proof, see Aubuchon (1982, p.19).

The Wilcoxon confidence interval for 9, the true population median, is

derived by inverting the acceptance region of a size a=2P9(Tm(e)<d(m)) -

2P0 (Tm(O)<d(m)) Wilcoxon signed rank test where

m
Tm(s) E E R(Ixi-el).I(x>e) = Z Z I ((X+Xj)/2 > 9) (2.1)

i=1 i:1si-j<m

with I(A) denoting the indicator function of the event A and R(IXi-eI)

representing the rank of IXi-9I among the ordered IXj-eG, j1l,...,m. The

m(m+l)/2 averages (X.+X)/2, 1Si_<j<_m, are referred to as the Walsh averages.
i

Let M. m(m+)/2 and let
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Z(1) 5(2) -5 - Z(M) (2.2) !4

represent the ordered Walsh averages. In view of the second equality in

(2.1),

d(m) S Ti(O) S m(m+l)/2 - d(m) if and only if

[Z(d(m))' Z contains . (2.3)-

Since we assume F is continuous, we take the Wilcoxon-interval for 0 to be

the closed interval

[Z(d(m)) , Z(M-dlm)+l) 1. (2.4)

The d(m)-value will be called a depth since it specifies how deep into the

ordered Walsh averages the endpoints lie. It is clear that this interval has

exact confidence coefficient Y=1-.a and is distribution free (since the

Wilcoxon signed rank test statistic is).

Define,

Gmx) = Z Z I {(Xi+Xj)/2<_x)/(m) (2.5)
< liSiSj<_m

*. and note that

cIx) 2Tm(G)/m(m+1)

(2.6)

G M(x) + 0(m ).

,.%
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Now a slight adaptation of Lemma 4.2 of Geertsema (1970) yields the following

lemma:

Lemma 2.1. Under Assumptions 2.1 (with p=S), if {km) is any sequence of

I"

integers satisfying 2km/nu+l) =12 + O lm2 1ogm) as m - , then wpl

Zk) =Ge + [ 2 km/mlm+l) - G()j/G;(G) + 0(m-3/41ogm) (2.7)

Z(km)(27

where G is defined in (2.6) and Z(km) is defined in (2.2).

We have at once the following almost sure representation of the endpoints of

the Wilcoxon-interval. The constant km is suggested by the normal

approximation used with the Wilcoxon statistic.

Theorem 2.1. Under Assumptions 2.1, wpl

Z(d(m)) 9 - k/1t/2I f 2 1xdx)-[(Gm()-1/2/(2ff 2 (x)dx)+o(m- 1/ 2)

(2.8)

Z(Mm-d(m)+l ) = + k,/((12) ff2(x)dx)-G%(l)-I/21/(2ff (x)dx)+o(m-I/2

where d(m) m(m+l)/4 + .5 - k((m+l)(2m+l)/24)1 /2

. ., ", , . . " '"' ._: ' ..- : . . .,. .-.. i ; "-. . v " ' - "l . " - " ''-- '':" -""""''" . , ,"-' ' .
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Proof: We prove the theorem for the lower endpoint Z(d(m) ). A similar

argument holds for the upper endpoint.

It is easily shown that d(m)/(m(m+l)/2) 1 1/2-k,/(3m)1/2+o(m- 1/2) 1/2

+ o(m- 21ogm). Now, Gq(e) =2f 2 (x)dx, and observe that 0(m-3/41ogm)

o(m-1/2). The theorem follows immediately from the preceding lenna.

Remark 2.2. Under Assumption 2.1(ii), Geertsema's result and hence Theorem

2.1 can be easily extended to include any quantile fp, O<p<l.

Let L = Z(d(m)) and U = Z(M-d(m)+l), the. lower and upper endpoints of

the Wilcoxon-interval (2.4). As a corollary to Theorem 2.1, we have the

following:

Corollary.

As ar,

31/2 D1/ 22 2(i) (L-e) 4 Z ~ i(-k/121 2ff2(x)dx, 1/12(ff2(x)dx)2)

where n(pA2) denotes the normal cdf with parameters p and
2 .

(ii) m/2 (U-L) 4 ko/(3/ 2ff2 (x)dx) wpl. (2.9)

(iii) P(G<L) # *(-k=) = a, where fl") is the standard normal cdf.

Proof: To prove part (i), we use the fact that Gm(.) (2.5) is a U-statistic.
By a theorem due to Hoeffding (Serfling; 1980, p.192), ml 2 (Gm()-I/2)

By (G(G)-121/2

n(0,1/3). Slutsky's Theorem along with (2.6) implies m/ 2 (Gm(e)-1/2)

- - -' -
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n10,1/3). Now, i) follows at once from (2.8) and Slutsky's theorem. Part

(ii) is immediate from (2.8). In part (iii), write P(G<L) as P(0<ml/2(L-0))

and apply part (i).

Hence, if the Wilcoxon-interval (2.4) is defined by depths

d(m) : m(m+l)/4+.5-k (m(m+l)(2m+i)/24)/2, (2.10)

the approximate confidence coefficient is -y l-2#(-ka) 1-2a.

I

. . .. . . . . . . . . . . ~ . . . . . . .

• -... • . .o ' . . . . . . . . . . . . . . . . .
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3. The Two-Sample Inference

Let X1,... ,Xm and YI"... Yn represent independent random samples fromn

F(x-e ) and F(y-ey) respectively where

x y

(i) Ox and Oy are the unique medians of the X and Y populations

(ii) F satisfies the Assumption 2.1

(iii) G (tx) P((Xl+X 2 )/2<tx) and G9 ltv) ( P((Yl+Y 2)/2!ty) satisfy
I~ x y 12 y

the Assumption 2.1.

Further, with M m(m+l)/2 and N : n(n+l)/2, let

[LX,Ux ] : Zld(m )),z lM -d (m )+ Il]

and (3.1)

[LyUy] : Z(d(n)),Z(N-d(n)+l)] '.

represent Wilcoxon-intervals (2.4) constructed on the X and Y samples,

respectively, where

(i) the depths d(m) and d(n) are defined as in Theorem 2.1, however,

with kx and ky replacing the k., and

(ii) x = 1-2P(Tm(O)<d(m)) and y 1-2P(Tn(O)<d(n)) denote the

respective confidence coefficients.

To test

.. .-*. --.. .. .. ..-... ..-. -- _ _ .. ., .. .* ...., ... .... .. .- 1
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'

Ho: 9 :y-0 x  0 Va. HA: A X 0 %
y x %

we reject Ho if the two Wilcoxon-intervals are disjoint. That is, .

if Ux < orUy< (3.2)
yU

We wish to pick the two Wilcoxon-intervals so that if the intervals are

disjoint we reject Ho: A=0 in favor of HA: & 0 with a specified significance

level ac

Recall from the Corollary to Theorem 2.1, part (iii), that the

approximate confidence coefficients are 7x'l-2#(-k x ) and Yy'1-2f(-ky),

respectively. The following theorem relates ac' the comparison rate, to kx

and k which determine 7 and -y It therefore indicates how to pick -y and

7 y so that we achieve ac (or 7c=1-ac) at least in an approximate sense.

Theorem 3.1. Suppose that m,n o so that m/(m+n)4X, O<X<l. Then under Ho:

A:0, with the decision to reject given by (3.2),.m

c  P(Ux<Ly) + P(Uy<L x ) 4 20(-(l-X)Ik x - l / k y )  (3.3)

where f(l-) is the standard normal cdf.

*" The proof is the same as that of corollary to Theorem 2.1 of Hettmansperger

(1984).

Define kc by ac:2 #(-kc). Then from (3.3) kx and k must satisfy the
,"y

condition y

*. . . .. . *~. '
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k° a (1-')1/2kx+'l/2ky. (3.4)

Clearly, there are infinite number of choices for kx and ky, hence for Yx and

7y . We will discuss two of these choices later.

The test can be based on a confidence interval for A-e x . An

equivalent decision is: Reject Ho: A=O in favor of HA: O if

0 is not contained in [Ly-UX, Uy-LX]. (3.5)

Hence, if ac is the significance level of the test, then the interval in

(3.5) has confidence coefficient 7c=:I-a. We therefore take the two-sample

confidence interval for A=Gy-e x to be

[Ly-UxIUy-Lx] [Z(d(n))-Z(M-d(m)+l),Z(N-d(n)j).)-Z(d(m))]. (3.6)

This interval has approximate confidence coefficient 7c=-2#(-kc) where kc is

defined in (3.4).

Remark 3.1. The present procedure is based on the ordered dependent Walsh

averages ((X.+X.)/2; 1-i-jSm) and ((Y.+Y.)/2; 1i<j~n). Hence, we are unable

13 1

to formulate the procedure in terms of statistics whose distributions are -

tractable. We must rely on the normal approximation to the size ac" For a

second-order approximation based on Edgeworth expansions see Tableman (1984).

The following theorem which is similar to Theorem 2.3 of Hettmansperger 7.
'.

(1984), gives the asymptotic length of the two-sample confidence interval '

p~ < pP ** P pP *P p.

-. ' .. ," "''' .- " -. ,. " .' ." "w .- -. .. .. .. ., ..°' '' '' - " '. -. -. .. ,. . .. . . ., .. ,''- -' '-. .'."'.. . . . . .'. .. -..... ,.. . . . .,.. . .,. .2* P . .P . ,' .' ,' ,' ,
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(3.6) which is a measure of its efficiency and hence of the test from which

it is derived. The asymptotic length does not depend on kx or y but rather

on kc as defined in (3.4).

Theorem 3.2. Suppose m,n- so that m/(m+n)-X, O<A<1. Let A(TW)

denote the length of the two-sample confidence interval given in (3.6).

Then, wpl

(m+n) 1 / 2A(TW) * kc/(3X(l-)) 1/ 2ff 2 (x)dx. (3.7)

We note that not only do all the intervals (obtained through the

defining relationship (3.4)) have the same asymptotic length, but
/N2A(TW)/(2kc) converges to I/((121(-)2))1/2ff2 (x)dx wpl. This limit is the

reciprocal of the Pitman efficacy of the Mann-Whitney-Wilcoxon two-sample

test; see Hettmansperger (1984, p.163). Hence, the tests based on the

Wilcoxon-intervals have the same efficiency properties as the 5

Mann-Whitney-Wilcoxon test.

As mentioned previously, there are an infinite number of ways to choose

the intervals so that the two sample test has asymptotic size a. For the

case of sign-intervals Hettmansperger (1984) considered restricting the two

intervals to having the same confidence coefficient or having the same

asymptotic length. The same solution applies to the Wilcoxon-intervals. In

particular, we recommend the equal confidence coefficients solution because,

as indicated in Table 1 of Hettmansperger (1984), the common value of the

confidence coefficients does not change much as the ratio of sample sizes

varies between 1 and 3. Other solutions are not as stable.

p
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Hence, we recommend using two 84% Wilcoxon-intervals for a 5% two-sided,

two-sample test or two 75% Wilcoxon-intervals for a 10% to sided, two-sample

test. The later case provides for a 5% one-sided, two-sample test.

Example. We illustrate the ideas on a small data set. Suppose we wish to

compare the growth of mushrooms with and without vitamin B1 in their diets.

The data given in Table 1 has been altered for illustration purposes from that

given by Lehmann (1975, p.47). The measurement is weight gain in milligrams

at the end of an observation period.

- Table 1 about here -

Let A=Gy-ex, the difference between the treatment (BI) and control (NO BI)

population medians. We assume the weight gain populations are symmetric. To

test H.: A=0 vs HA: M0, we could use the Mann-Whitney-Wilcoxon rank sum

test. Using the MANN command in Minitab (see Ryan, Joiner and Ryan (1985)),

we find the sum of the ranks (breaking ties by averaging) of the treatment

group is 141.5 with a two sided p-value of .0065. Hence we reject Ho: A=0 at

a< .01.

A more informative analysis is based on the comparison of two 84%

Wilcoxon confidence intervals for Ox and ey. Figure 1 provides the notched

box plots for the two groups. Comparing the 85%-Wilcoxon notches leads to

rejection of H0 : A=O at the 5% level since they are disjoint.

- Figure 1 about here -

. ,-. ) -.. '..-. ..-.... .. ) ......, .. -.... ...-. ..... .-... ..- .- ; .. ) - ...- ,; -.. . . . . . . . . .. . . . . . . . . . . . . . ...-...... .-...-.. ,.. . .,.. .....-. .•- .-..
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Further, we have the intervals and estimates for y and x as [LyU

[23.0,28.5], y =25.5 and [Lx,U x  [ = 15.0,20.5], Ox=l 8 .0, respectively. The

estimates x and 0 y are the Hodges-Lehmann (1963) estimates computed as the

median of the Walsh averages. In addition, a 95% confidence interval for A

is given by [Ly-Ux,Uy-L ] = [2.5,13.5] with A = Oy-G = 7.5. The figure

along with the intervals and estimates are available using the BOXPLOT and

WINT commands in Minitab.

Note that the Hodges-Lehmann estimate and 95% confidence interval for A

derived from the Mnn-Whitney statistic are A 8.0 and [3.0,13.0],

respectively. These differ slightly from the Wilcoxon-interval comparison.

Eighty five percent sign-notches are not available for the given sample

size. The closest confidence coefficient to 85 percent is 89 percent and

yields [22.0,29.0] and [14.0,23.0] for B1 and NO BI groups, respectively.

These intervals overlap and would fail to reject H.: A=0 at some level less

than .05. If the distributions are not too heavy tailed then the Wilcoxon

notches and the Mann-Whitney-Wilcoxon test are more efficient than the

sign-notches and this may result in a failure of the sign-notches to detect a

significant difference when the other methods will detect it.

*.

! -
:: . .p.
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4. The Effects of Asymmetry on the Two-Sample Inference

As remarked in Section 2, Geertsema's result can be extended to include

any quantile p, O<p<l. We state here, without proof, the form most useful

for our discussion. We note that the result does not rely on the symmetry

of F.

Theorem 4.1. Under Assumptions 2.1 (i), (ii) (but with symmetry on F

dropped), if (km ) is any sequence of integers satisfying 
2km/in(m+l)

G(tp)+k/ml/2+o(m- 1/2 ) as I+*, then wpl
P!

Z(km) tp+k/ml/ 2Gq(tp) - [G(fp)-G9(tp)]/Ge(p) + olm-

Let $ denote the median of G,(-). Note that under asymmetry, 9*O0.

With the depth d(m) defined as in Theorem 2.1, we have 2d(m)/m(m+l)

1/2-k/(3m)1/ 2+o(m- 1/ 2 ) as m+-. But now, 1/2=(G0 (0). Hence, Theorem 4.1

gives us the following almost sure representation of the endpoints of the

one-sample Wilcoxon-interval. They differ from those given in Theorem 2.1.

1/2.

L * k/(3m) G'(e*)-[Gm(e)-1/2/G(O*l+o(1-1/2)

and (4.1)

G* +k/(3m)I/2G'0(O) -[k(G*)-1/2]/G;(0*)+o(m-1 /2 ).

Before proceeding to the two sample inference, we make the following

remarks:

'n............ -..............................-...-..



-16-

Remarks 4.1.

(i) When F is not symmetric, 9 differs from 9 by a constant a; that

is, a* (0)-+a. This follows from the fact that * is such that

G9(e9 1=f*F(2e,_2G-x) f(x! =i/2. JP

Now, differentiate with respect to 9 to obtain d(9* ()/d=l.

Hence, Ge(e*) - 2f f(2a-x)f(x)dx.

(ii) It follows from Theorem A in Serfling (1980, p.192) and from (2.6)

that m (G(*)-1/21/Gg(e D Z~.[O;(a-1/4)/(f f(2a-x)f(x)dx)2 I

as m.c, where v = f[F(2a-x)]2f(x)dx.

We now return to the two-sample inference. Let 9* and is denote the

medians of Gx(-) and G (.), respectively. Under the same shape assumption

on the underlying distributions, Qx--e+a and 9jy--e+a. It is clear that

testing Ho: 9y=9 is equivalent to testing Ho: y and that -=- " We
y y Yx

are now in a position to approximate act the comparison rate of the test

(3.2), and to determine the asymptotic length of the two-sample interval

(3.6) for A when F is asymmetric. These results are stated in the next

theorem and they follow immediately from (4. 1) and Remarks 4.1.

Theorem 4.2. Suppose that m,n-o- so that m/(m+n)4X, 0<X<l.

(i) Then under Ho: A:0, with the decision to reject given by (3.2)

1
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- 2#(-kc/(12(v-1/41) 1/2)

im

(ii) Let A(TW) denote the length of the two-sample confidence interval

given in (3.6). Then, wpl,

(m+n)1 /2A(TW) - kc/[(3X(-X))'1/2ff(2a-x)f(x)dx]. C

Remarks 4.2.

(i) Suppose k. is the critical value that provides a size-ac .

two-sided test when F(.) is symmetric. Although v=1/3 when F(.)

is symmetric, for asymmetric distributions we have 1/4:5v!51/2. We

see from part (i) of Theorem 4.2 this can result, theoretically,

in increasing the size. However, Tableman (1984) simulated the

two-sample test (3.2) for samples of small to moderate sizes from

chi-square distributions with 4, 18, 30 degrees of freedom and

from the standard normal distribution. No evidence was found that

asymmetry (in this case, right skewness) effects the size.

(ii) Part (ii) of Theorem 4.2 reveals that the main effect of asymmetry :

is the possibly significant reduction in power. This follows from

the fact that for certain asymmetric densities f f(2a-x)f(x)dx can

be quite small. We also note that the Pitman efficiency is no

longer that of the Mann-Whitney two-sample test. In this setting,

the efficacy of that test remains (12(1-x)X) 1 "2f f2 (x)dx, and hence

may be much more efficient since f f(2a-x)f(x)dxS5ff 2 (x)dx.
-40 ~ o



-18-

Aubuchon, J. C. (1982). Rank Tests in the Linear Model: Asymmetric Errors.

Unpublished Ph.D. dissertation, The Pennsylvania State University,

University Park.

Geertsena, J. C. (1970). Sequential confidence intervals based on rank

tests. Ann. Math. Statist. 41, 1016-1026.

Hettmansperger, T. P. (1984). To-sample inference based on one-sample sign

statistics. J. R. Statist. Soc. Ser. C. 33, 45-51.

Hettmansperger, T. P. (1984). Statistical Inference Based On Ranks. John

Wiley, New York.

Hodges, J. L., Jr. and Lehmann, F. L. (1963). "Estimates of Location Based

on Ranks," Ann. Math. Statist. 34, 598-611.

Lehmann, E. L. (1975). Nonvarametrics: Statistical Methods Based on Ranks.

Holden-Day, San Francisco.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two

random variables is stochastically larger than the other. Ann. Math.

Statist. 18, 50-60.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978). Variations of box plots.

The American Statistician 32, 12-16.

' -,.° ;. ..-. -. .-.. ..- ,- : .,, - .'./ ." ... ,.-.-,.,, :...,,..-.,.., .. -?, ° ,..



-19-

McKean, J. W. and Schrader, R. M. (1983). A comparison of methods for

studentizing the sample median. Tech. Rpt. No. 68, Dept. of Mth.,

Western Michigan University, Kalamazoo, Michigan.

Mood, A. M. (1950). Introduction to the Theory of Statistics. McGraw-Hill,

New York.

Ryan, B. F., Joiner, B. L., Ryan, T. A., Jr. (1985). Minitab Handbook, 2nd

Ed., Duxbury, Boston.

Serfling, R. J. (1980). Approximation Theorems of Mthemtical Statistics.

John Wiley & Sons, New York.

Tableman, M. (1984). Two-Sample Procedures Based on One-Sample Linear Signed

Rank Statistics. Unpublished Ph.D. dissertation, The Pennsylvania State

University, University Park.

Wilcoxon, F. (1945). Individual comparisons by ranking methods.

Biometrics 1, 80-83.

.

.

.°-

' " ' ; i 'i ' . r " , -' - " -'. - -' " . " " .'. '" . -" -" o' , -" • " • . , . " " .' ." : -'. " -' .'. " - -" ." '. -' ." " - -" '.' '-" - ,



-20-

Table 1

Weight Gain

X: NO B1 12 13 14 14 17 18 18 23 24 25

Y22

S.
v

?-.S.

* 5



.u-V% -- 7F T- fi 7 -- 7-7- -7

B81 r

NO Bl T

10.0 15.0 20.0 25.0 30.0 35.0

Figure 1. Wilcoxon Notched Boxplots for Mushroom Data.
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